
Reco: Efficient Regularization-Based Coflow
Scheduling in Optical Circuit Switches

Chi Zhang∗, Haisheng Tan∗, Chao Xu∗, Xiang-Yang Li∗, Shaojie Tang‡, and Yupeng Li†
∗ University of Science and Technology of China (USTC), Hefei, China

† The University of Hong Kong, Hong Kong ‡University of Texas at Dallas, USA

Abstract—To improve the application-level data efficiency, the
scheduling of coflows, defined as a collection of parallel flows
sharing the same objective, is prevailing in recent data centers.
Meanwhile, optical circuit switches (OCS) are gradually applied
to provide high data rate with low power consumption. However,
so far few research outputs have covered the flow scheduling in
the context of OCS, let alone the coflow scheduling problems.

In this paper, we investigate coflow scheduling in the OCS-
based data centers. We first derive a novel operation called
regularization processed respectively on the flow traffic demands
and the flow start times. Regularization can be efficiently
implemented and reduce the circuit reconfiguration frequency
dramatically. We then propose a 2-approximation algorithm,
called Reco-Sin, for single coflow scheduling to minimize the
coflow completion time (CCT). For multiple coflows, we derive
another approximation algorithm, called Reco-Mul, to minimize
the total weighted CCT, which can transform any non-preemptive
multi-coflow scheduling in packet switches to that in OCS.
Extensive simulations based on Facebook data traces show that
Reco-Sin and Reco-Mul outperform state-of-the-art schemes
significantly, i.e., one single coflow can be finished up to 2.72×
faster with Reco-Sin, and multiple coflows can be completed
up to 3.44× faster with Reco-Mul.

I. INTRODUCTION

In current distributed computing frameworks (e.g., MapRe-

duce [1], Dryad [2] and Spark [3]), communication data flows

in the network may share a common performance goal as they

are likely to correspond to the same job from one application.

To capture this kind of application-level requirements, a new

abstraction of structured data flows, called coflow, is proposed

to allow applications to convey their semantics to the network

[4]. A coflow is a collection of related parallel individual

flows that occur typically between two stages of a multi-

stage computing task, such as shuffling in the MapReduce. To

improve the application-level performance, instead of analyz-

ing a single flow, we turn to optimize the coflow completion
time (CCT), defined as the duration from its arrival to the

completion of all the individual flows.

Meanwhile, based on the development of micro-electro-

mechanical system (MEMS) techniques, optical circuit

switches (OCS) become popular in modern cluster networks

[5]–[9]. Compared with electrical packet switch, an OCS has

Haisheng Tan is the Corresponding Author (Email: hstan@ustc.edu.cn).
This work is supported partly by the National Key R&D Program of China

2018YFB0803400, China National Funds for Distinguished Young Scientists
No. 61625205, NSFC Grants 61772489, 61751211, Key Research Program
of Frontier Sciences (CAS) No. QYZDY-SSW-JSC002, NSF ECCS-1247944,
NSF CNS 1526638, and the Fundamental Research Funds for the Central U.

much higher data transfer rate but lower power consumption.

However, each ingress or egress port in an OCS is restricted

to establish at most one circuit for data transmission at a

time, called the port constraint. A reconfiguration to establish

new circuits in OCS will take a fixed period, called the
reconfiguration delay and denoted as δ, typically in tens of

microseconds [10].

In order to minimize the CCT, coflow scheduling, including

single coflow scheduling (a.k.a. intra-coflow scheduling on in-

dividual flows within a coflow) and multiple coflow scheduling

(a.k.a. inter-coflow scheduling), has been extensively studied

in traditional electrical packet switches [11]–[14]. In OCS,

individual flow scheduling has also been frequently studied

(e.g. [5]–[10], [15]). However, there are few works on coflow

scheduling in OCS. Sunflow [9] mainly focused on the single

coflow and provided a simple heuristic policy for multiple

coflows. The problem of OCS-based coflow scheduling is

more challenging mainly due to: 1) Besides the transmission

order of flows, we have to design the establishment and

scheduling of the circuits to avoid frequent time-consuming

circuit reconfigurations; 2) the port constraint can not be vio-

lated when establishing circuits for multiple flow transmission

simultaneously; and 3) when multiple coflows coexist, the

competition among coflows makes the problem even tougher.

In this paper, we investigate both the single and multiple

coflow scheduling problem in OCS-based data centers, aim-

ing at minimizing the CCT and the weighted average CCT,

respectively. Our contributions can be summarized as follows:

• We propose a simple and effective operation, called

regularization, processed respectively on the flow traffic

demands (Sec. III-B) and the flow start times (Sec. IV-A)

such that the circuit reconfiguration frequency is reduced

significantly.

• Based on regularization, we propose a single coflow

scheduling algorithm, named Reco-Sin, to minimize

the CCT with an approximation ratio of 2 (Sec. III).

To the best of our knowledge, this is the first constant

approximation algorithm for the all-stop OCS 1.

• We further derive a novel algorithm, named Reco-Mul,

for multiple coflow scheduling to minimize the total

weighted CCT (Sec. IV). We theoretically prove that

Reco-Mul can effectively transform any non-preemptive

1In the all-stop model, a circuit reconfiguration will halt all circuits
established in the OCS until the reconfiguration is completed.

111

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00020

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 01,2023 at 04:39:41 UTC from IEEE Xplore. Restrictions apply.

multi-coflow scheduling scheme in packet switches with

an approximation ratio of Δ into a feasible OCS-based

coflow scheduling with an approximation ratio of Δ ·(
1 + 1

�√c�
)2

. Here, we assume that a nonzero traffic

demand in OCS is no less than c×δ, where c is a positive

constant and δ is the circuit reconfiguration delay2.

• Based on real data traces from Facebook, we con-

duct extensive simulations to compare our algorithms

with state-of-the-art schemes (Sec. V). Our simulation

results demonstrate that the number of reconfigurations

in Reco-Sin can be reduced to only 1
7 of that in the

baselines, and hence Reco-Sin can finish transmitting

a single coflow up to 2.72× faster. As for multiple

coflow scheduling, Reco-Mul outperforms the baselines

dramatically, which finishes transmitting multiple coflows

up to 3.44× faster on average.

Paper Organization: We present the model and problem

definitions in Sec. II. Our algorithms for the single coflow

and multiple coflow scheduling are proposed in Sec. III and

Sec. IV, respectively. Extensive simulations are in Sec. V.

Discussion is presented in Sec. VI. Related work including

a comparison among our results and the existing works is in

Sec. VII. We conclude the whole paper in Sec. VIII.

II. PROBLEM FORMULATION

In this section, we present the system model and formally

define our coflow scheduling problem in OCS.

A. System Model

Network Model: Similar to existing works ([9], [11], [12],

[16]), the fabric of a data center network is abstracted as

one non-blocking circuit switch with N ingress ports and N
egress ports (Fig. 1). Data flows are buffered at senders to be

transferred from the ingress to the egress ports.

Optical Circuit Switch

1

2

3

1

2

3

3

3
5

1
6

2

Egress Port

D1 =

1 3 2

5 0 0

1 0 0

Ingress Port

D2 =

2

0 2 0

0 0 3

0 6 4

1

4

Fig. 1. A 3×3 Network Model: Coflow 1 and 2 are to be transmitted, whose
demand matrices are D1 and D2, respectively.

Optical Circuit Switch: To transmit data from ingress port

i to egress port j, OCS needs to establish a circuit between

the two ports. Without loss of generality, the bandwidth of a

circuit from one ingress to one egress port is normalized to

1, which is fully occupied by only one flow at a time. Recall

that circuit establishment should satisfy the port constraint,

that is to say, each ingress(egress) port can only establish

2This assumption is reasonable as in practice only elephant flows are
transferred through OCS while mice flows can be handled more efficiently by
packet switches [7].

a connection to one egress(ingress) port at a time. Denote

the circuit reconfiguration delay as δ. Multiple circuits can

be reconfigured simultaneously during one reconfiguration if

they do not share a common port. Here, we adopt the all-
stop circuit switch model as [6]–[8], [10], where a circuit

reconfiguration would halt all transmissions in the OCS 3.

We define a circuit establishment, denoted by C(u), as all

the circuits concurrently established in an OCS. Due to the

port constraint, C(u) is in fact a matching in an N × N
bipartite graph where the two disjoint vertex groups are the

egress and ingress ports, respectively. The duration of the

circuit establishment C(u) is denoted as dur(u). We call the

pair (C(u), dur(u)) as a circuit assignment. Furthermore, a

circuit scheduling C is composed of a sequence of circuit

assignments {(C(1), dur(1)), · · · , (C(m), dur(m))}, where

m is the number of assignments. A circuit scheduling is valid
if the port constraint is satisfied.

Coflow: A set K of coflows are to be transmitted through

the OCS. Denote K = |K| as the number of coflows. Each

coflow k ∈ K has a non-negative weight wk, which indicates

its sensitivity to the latency. Denote ak as the arrival time of

coflow k. Similar to [11], [14], [16], we assume that the flows

within one coflow arrive at the same time. An N ×N matrix

Dk is to denote the data transmission demand of coflow k,

which is called the demand matrix. Each entry dki,j in this

matrix represents the amount of data to be transferred from

ingress port i to egress port j. For example, in Fig. 1, d22,3 = 3
means the data amount in Coflow 2 to transmit from ingress 2
to egress 3 is 3. Since the bandwidth of circuits is normalized

to 1, without ambiguity, we also denote dki,j as the time needed

to transmit all demands from ingress port i to egress port j.

As stated in Sec. I, we assume that there is no tiny traffic

demand in OCS, i.e., dki,j ≥ c · δ for any i, j and k, where

c is a constant called the optical transmission threshold. We

set fk
i,j as the time when the transmission demand from port

i to j in coflow k is completed. Then, the time that the whole

coflow k is finished is defined as fk = max
i,j

fk
i,j . Hence, the

coflow completion time (CCT) of coflow k, denoted as Tk, is

the duration from its arrival to the completion of transmission,

calculated as Tk = fk − ak. Since we consider the data

flows have been buffered in the senders, the arrival time of

all coflows can be assumed to be the same similar to [11]

[14] [16], i.e., ak = 0, ∀k.

B. Problem Statement

We next formally define coflow scheduling problems for a

single coflow and multiple coflows, respectively.

Problem 1 (Single Coflow Scheduling). Given a single coflow
with demand matrix D arriving at a network which is modeled
as an N × N non-blocking OCS, the problem is to find a
feasible coflow scheduling so that its CCT is minimized.

3We will show that our results for multiple coflow scheduling can be
extended to the not-all-stop model (See in Sec. VI).

112

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 01,2023 at 04:39:41 UTC from IEEE Xplore. Restrictions apply.

Note that as there is only one coflow in the network (with

demand matrix D), a circuit scheduling C can be directly

transformed into a coflow scheduling S , i.e., at each time,

scheduling the traffic demand in D to transmit along all

the currently established circuits. Therefore, Problem 1 is

equivalent to finding a valid circuit scheduling to finish all

the traffic demands in D with the minimum time, which is

composed of two parts, the aggregate flow transmission time

and and the total delay caused by reconfigurations.

Problem 2 (Multiple Coflow Scheduling). In a network mod-
eled as an N×N non-blocking OCS, a set K of coflows arrive
with demand matrices Dk, ∀k ∈ K. The problem is to find a
feasible coflow scheduling such that the total weighted coflow
completion time,

∑
k∈K wkTk, is minimized.

The coflow scheduling problem has already been proved

NP-hard [9], [17]. In the following, we will propose our novel

efficient algorithms to achieve approximate results.

III. SINGLE COFLOW SCHEDULING

The main challenge for single coflow scheduling in OCS is

how to effectively decrease the reconfiguration frequency. We

leverage the classical Birkhoff-von Neumann (BvN) decom-

position, and design a novel operation, called regularization.

A. Birkhoff-von Neumann Decomposition

According to Birkhoff’s Theorem [18], any doubly stochas-

tic matrix 4 can be decomposed into a set of permutation

matrices with specific coefficients by Birkhoff-von Neumann

(BvN) decomposition. An example can be found in Fig.

2. Under BvN decomposition, an N × N matrix can be

decomposed to m ≤ N2− 2N +2 permutation matrices [19].

It is NP-hard to compute the BvN decomposition with the

minimum permutation matrices [20].

Given a single coflow with demand matrix D, we can

make it as a doubly stochastic matrix D′ through increasing

the values of some entries, which is called stuffing. A BvN

decomposition over D′ is exactly a circuit scheduling that

meets the coflow traffic demand, i.e., each permutation matrix

is a circuit establishment whose duration is the coefficient. In

fact, if the reconfiguration delay is zero (i.e., δ = 0), Problem 1

can be solved optimally by stuffing and BvN decomposition

[16]. However, with non-negligible reconfiguration delays, it

might lead to a terrible CCT to get a circuit scheduling

based on the BvN decomposition in previous works (e.g.,
[7], [10], [16]). This is because when preemption occurs,

many tiny residual demands are produced leading to extensive

reconfigurations. Specifically, we have the following theorem.

Theorem 1. Given a coflow with demand matrix D ∈ R
N×N ,

the method that generates a valid circuit scheduling to satisfy
the demand through stuffing and BvN decomposition has an
approximation ratio of Ω(N) to minimize the CCT in OCS.

4A doubly stochastic matrix is a square matrix of nonnegative real numbers,
where the sum of each rows and columns equal to a constant.

Proof. According to [21], there exists a doubly stochastic

matrix D = [di,j] ∈ R
N×N with the minimum number of

decomposition matrices as γ(D) = �n/2��(n + 1)/2�. We

can construct a new matrix D′ = [d′i,j] = [di,j · ε], where ε
is a small enough positive constant. The minimum number of

decomposition matrices of D′ is γ(D).
D′ needs γ(D) decomposition matrices based on BvN, that

is to say the total reconfiguration delay is γ(D) · δ. Thus, the

coflow completion time is γ(D)·δ+ttrans = Θ(N2)·δ+ttrans.

Here, ttrans is the data transmission time depending on the

traffic demand that could be close to zero. However, there

exists a scheduling could transmit all demand within N circuits

and the CCT of this scheduling would be at most N · δ +
t′trans, where t′trans could be close to zero. Therefore, the

approximation ratio of the algorithm by directly using primary

BvN decomposition is Ω(N).

B. Regularization on Traffic Demand

The deficiency of primitive BvN-based coflow scheduling is

due to the frequent preemption, while non-preemptive schedul-

ing may cause long circuit idle time. To address this issue,

we propose a pre-processing operation, named regularization,

which can greatly reduce the reconfiguration frequency with

little cost on the circuit idle time. Given a demand matrix

D, the process of regularization is to regularize each entry

di,j ∈ D to �di,j

δ � · δ, and get a new regularized matrix D′ 5.

Fig. 2 is an example illustrating the benefit of regularization.

A demand matrix Dex is decomposed into 5 permutation

matrices each with a coefficient. Each permutation matrix

corresponds to a circuit configuration, and each coefficient

represents the transmission time on the corresponding con-

figuration. We set δ = 100. Then the time to complete Dex

is (107 + 104 + 101 + 2 + 1) + 5 × 100 = 815. If we do

regularization, the resulting matrix D′
ex can be decomposed

into 3 permutation matrices each with a coefficient of 200.

In fact, the actual transmission time of each circuit may be

less than 200, because when one circuit finishes transmitting

its demand, the OCS will automatically reconfigure the circuit

for further transmission. In view of this, the actual completion

time of D′
ex is (106 + 109 + 103) + 3× 100 = 618, which is

much less than 815, the completion time before regularization.

104 109 102

103 105 107

108 101 106

200 200 200

200 200 200

200 200 200

D′
ex

Dex

regularization

1 0 0

0 1 0

0 0 1

0 1 0

0 0 1

1 0 0

0 0 1

1 0 0

0 1 0

0 1 0

0 0 1

1 0 0

1 0 0

0 1 0

0 0 1

0 0 1

1 0 0

0 1 0

107 X=

0 1 0

1 0 0

0 0 1

0 0 1

0 1 0

1 0 0

2 X+

= 200 X

104 X+

1 X++

200 X+ 200 X+

104 X+

Fig. 2. An example of decomposition and regularization.

5As we only increase the entry values during regularization, a valid circuit
scheduling satisfying D′ will definitely satisfy D.

113

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 01,2023 at 04:39:41 UTC from IEEE Xplore. Restrictions apply.

C. Algorithm

Based on the above techniques, given the coflow demand

matrix D, our regularization-based single coflow scheduling,

called Reco-Sin, consists of following steps: 1) Regularize

D and get a doubly stochastic matrix D′ by stuffing; 2) Run

BvN decomposition on D′; and 3) Regard each permutation

matrix as a circuit establishment and its coefficient as the

duration to derive a sequence of circuit assignments. The

details of Reco-Sin is described in Algorithm 1.

Algorithm 1: Reco-Sin: Single Coflow Scheduling

1 Input coflow demand matrix D, reconfiguration delay δ
2 Output a circuit scheduling C
3 C ← ∅;

4 D′ ← Run regularization and stuffing on D with δ;

5 while D′ has non-zero entries do
6 Find a matching on D′, let P, α be the permutation

matrix and the coefficient derived from this

matching;

7 Append (P, α) to C;

8 D′ ← D′ − αP ;

9 Return C;

Initially, Algorithm 1 calls the regularization operation (Line

4). It then iteratively calculates a decomposition (Line 6) and

computes the permutation matrix with the maximum coeffi-

cient (Line 8). We efficiently compute BvN decomposition by

max-min matching which is similar to the method in [7]. Each

permutation matrix and its coefficient corresponds to a circuit

assignment. We repeat the process until the demand matrix

has no non-zero entry and return the circuit scheduling C. As

discussed in Fig. 2, the actual completion time of the demand

matrix after regularization can be much less than the value of

coefficients, since the circuit will stop communication as long

as the demands on it are finished.

D. Theoretical Analysis

Here we will prove Reco-Sin is 2-approximate, which is

the first constant approximation algorithm for this problem.

Denote t′trans and t′conf as the transmission and the con-

figuration time of the scheduling obtained from Reco-Sin,

respectively, while t∗trans and t∗conf are the transmission and

the configuration time of the optimal solution respectively.

Lemma 1. In Reco-Sin, the reconfiguration time is no
greater than the transmission time, i.e., t′conf ≤ t′trans.

Proof. Let m be the number of assignments obtained from

Reco-Sin. Recall that t′conf = m · δ and t′trans =∑m
i=1 dur

′(i). Each di,j after regularization is an integral

multiple of δ’s. Thus, by BvN decomposition, each circuit

assignment lasts at least a time of δ, which gives dur′(i) ≥
δ, ∀i = {1, 2, ...,m}. This implies t′conf ≤ t′trans.

Set T ′ as the CCT given by Reco-Sin, while the optimal

is T ∗. Based on the above lemma, we have Theorem 2.

Theorem 2. Reco-Sin is 2-approximate, i.e., T ′ ≤ 2 · T ∗.

Proof. Suppose D and D′ are the original coflow demand

matrix and the regularized demand matrix, respectively. Let ρ
and ρ′ be the maximum value of the sum of each row and

column of D and D′ respectively. Let τ be the maximum

number of non-zero entries of each row or column of D.

Obviously, ρ is the lower bound on the transmission time of

Problem 1, that is ρ ≤ t∗trans. As we require at least τ times

circuit establishment for D, we have τδ ≤ t∗conf . Since, by

regularization, each entry of D is increased by at most δ, we

get ρ′ ≤ ρ + τδ. The regularized algorithm strictly takes the

coefficient of BvN decomposition of D′ as the duration of each

circuit assignment. And we have ρ′ = t′trans. By Lemma 1,

we can derive that

T ′ = t′trans + t′conf ≤ 2 · t′trans = 2 · ρ′
≤ 2 · (ρ+ τδ) ≤ 2 · (t∗trans + t∗conf) = 2 · T ∗.

This completes the proof.

Note that, in the proof of Theorem 2, we do not make use

of the assumption that dki,j ≥ c · δ set in Sec. II, which means

Theorem 2 holds for all coflow demand matrices.

IV. MULTIPLE COFLOW SCHEDULING

To schedule multiple coflows in an OCS-based data center,

we propose our algorithm, called Reco-Mul, and the theo-

ritical analysis on the approximation ratio.

A. Our algorithm: Reco-Mul

Although the multi-coflow scheduling problem for packet

switches has been extensively studied in existing literature

[11], [12], [14], [16], directly applying these algorithms in

optical circuit switches will result in frequent circuit recon-

figurations. To merit the benefits of the existing results for

packet switches, we design Reco-Mul that can transform any

non-preemptive multi-coflow scheduling in packet switches

to a scheduling in an OCS model. Here, non-preemptive

scheduling in packet switches means that there can be at

most one flow transmitting at one time on each port, and

once a flow starts transmission, it will be completed without

preemption. We denote ALGp as any algorithm that generates

a non-preemptive multi-coflow scheduling in packet switches.

According to the scheduling Sp returned by ALGp, our

algorithm Reco-Mul uses a regularization-based policy that

can reduce the reconfiguration frequency effectively.

As Sp is a non-preemptive scheduling, it can be transformed

into a feasible scheduling in OCS by trivially introducing a

reconfiguration delay when the circuit in the OCS changes.

Directly using Sp to schedule coflows in OCS would incur

too many reconfigurations. Intuitively, if we can smartly align

the start time of the flow transmissions in Sp, we can somehow

start multiple conflict-free flows (that do not share the same

ports) at the same time such that only one circuit configuration

is needed before transmitting these flows. Fig. 3 illustrates an

example of the regularization on three conflict-free flows when√
c · δ = 1. Before regularization, three reconfigurations are

114

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 01,2023 at 04:39:41 UTC from IEEE Xplore. Restrictions apply.

needed at t = 0.5, 0.7 and 0.9, while after the start time

is regularized to 1, only one reconfiguration is needed. This

reduces the cost of reconfiguration greatly.

Fig. 3. An example of regularization on the flow start times.

Here, we define a pseudo-time axis, denoted as t̂, on which

the reconfiguration delay δ shrinks to 0. The start point t̂ = 0
is corresponding to the real time point t = 0 6. We describe

our algorithm, Reco-Mul, in Algorithm 2.

Algorithm 2: Reco-Mul: Multiple Coflows Scheduling

1 Input coflow demand matrices D, coflow weights W ,
reconfiguration delay δ, optical transmission threshold c

2 Output a multiple coflows scheduling So
3 So ← ∅, Ŝo ← ∅;

4 Sp ← ALGp(D,W);
5 for (t1, t2, i, j, k) ∈ Sp do
6 t̂ †

1 ← t1 · �
√
c�+1

�√c� ;

7 t̂1 ←
 t̂ †
1√
c
� · √c · δ;

8 t̂2 ← t̂1 + t2 − t1;

9 Ŝo ← Ŝo ∪ (t̂1, t̂2, i, j, k);

10 Define η(Ŝo, t̂) as the number of reconfiguration required

in Ŝo during the time period [0, t̂);

11 for (t̂1, t̂2, i, j, k) ∈ Ŝo do
12 So ← So ∪ (t̂1 + δη(Ŝo, t̂1), t̂2 + δη(Ŝo, t̂2), i, j, k);
13 Return So;

Reco-Mul transforms a multi-coflow scheduling of ALGp

into a feasible scheduling (denoted as So) in OCS. During

the transformation, Reco-Mul first maps the scheduling Sp
(obtained in Line 4) to the pseudo-time axis with regular-

ization, which results in a regularized scheduling Ŝo (Line 5

to Line 9). As Ŝo is defined on the pseudo-time axis, which

ignores the reconfiguration delay, we add the reconfiguration

time into Ŝo to get the final feasible multi-coflow scheduling in

OCS, i.e., So (Line 10 to Line 12). During the regularization,

Reco-Mul stretches the start time of the flow transmissions in

Sp to a multiple of
√
c·δ (Line 6 and Line 7). Next we show the

feasibility of the coflow scheduling returned by Reco-Mul.

Lemma 2. The scheduling returned by Reco-Mul, i.e. So,
is a feasible coflow scheduling in OCS.

6For instance, on the real time axis, from t1 to t2 the OCS is transmitting
flow, halts for δ period of a reconfiguration and then resume transmission
at t3 = t2 + δ. Then, in our pseudo-time axis, t̂1 = t1, t̂2 = t2, while
t̂3 = t̂2 = t2 but not t3.

Proof. For any two tuples e1 = (t1, t2, i1, j1, k1) and e2 =
(t3, t4, i2, j2, k2) in Sp with port conflicts, these two elements’

transmission time must not overlap with each other as Sp is a

non-preemptive scheduling. We can assume t1 < t2 ≤ t3 < t4
without loss of generality.

With the regularization operations (Line 5 to Line 9 in

Algorithm 2), we have t̂1 =
⌊

t1√
cδ
· �

√
c�+1

�√c�
⌋
· √cδ and

t̂3 =
⌊

t3√
cδ
· �

√
c�+1

�√c�
⌋
· √cδ. Thus, the time length between

t̂3 and t̂1 is given by

t̂3 − t̂1 =

⎢⎢⎢⎣ t3 · �
√
c�+1

�√c�√
cδ

⎥⎥⎥⎦ · √cδ −
⎢⎢⎢⎣ t1 · �

√
c�+1

�√c�√
cδ

⎥⎥⎥⎦ · √cδ

≥
⎢⎢⎢⎣ t2 · �

√
c�+1

�√c�√
cδ

⎥⎥⎥⎦ · √cδ −
⎢⎢⎢⎣ t1 · �

√
c�+1

�√c�√
cδ

⎥⎥⎥⎦ · √cδ

≥ (t2 − t1) ·

√
c�+ 1

√c� − √cδ

= (t2 − t1) +
1

√c� (t2 − t1)−
√
cδ

≥ (t2 − t1) +

√
c

c
(t2 − t1)−

√
cδ.

Recall that we assume dki,j ≥ c · δ. Thus we have

t2 − t1 ≥ c · δ ⇒ t̂3 − t̂1 ≥ t2 − t1,

Therefore, the new tuples ê1 = (t̂1, t̂2, i1, j1, k1) and ê2 =
(t̂3, t̂4, i2, j2, k2) do not overlap each other in the time range,

thus Ŝo still preserve the port constraint. On the other hand,

the transmission time in Ŝo for each coflow remains the same

as that in Sp, thus Ŝo also satisfies all demand matrices. Be-

cause injecting reconfiguration time does not violates the port

constraint and the demand requirement, the final scheduling

So is still feasible, which completes the proof.

B. Theoretical Analysis

Denote OPT as the total weighted CCT of the optimal

non-preemptive scheduling in OCS, i.e., OPT =
∑K

k=1 wkT
∗
k

where T ∗
k is the CCT of coflow k in OCS. We further denote

OPT p =
∑K

k=1 wkT
∗,p
k as the total weighted CCT of the

optimal scheduling in packet switches, where T ∗,p
k is the

CCT of the coflow k in packet switches. As the optimal

non-preemptive scheduling in packet switches, OPT , has no

reconfiguration time, we have OPT p ≤ OPT .

Denote T o
k = tktrans + tkconf as the CCT of coflow k in the

scheduling So, where tktrans and tkconf are the transmission

time (including the time of waiting other coflows’ transmis-

sions) and the reconfiguration time of coflow k. Denote T p
k

as the CCT of coflow k in the non-preemptive scheduling

in packet switches, i.e., Sp. With any non-preemptive multi-

coflow scheduling in packet switches, in the following theorem

we show Reco-Mul can transform it to a feasible scheduling

in OCS by at most losing a constant factor.

115

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 01,2023 at 04:39:41 UTC from IEEE Xplore. Restrictions apply.

Theorem 3. Reco-Mul returns a feasible multi-coflow
scheduling in OCS with an approximation ratio of Δ ·(
1 + 1

�√c�
)2

, where Δ is the approximation ratio of ALGp.

Proof. The feasibility of the So is proved in Lemma 2. Now,

we prove its approximation ratio.

The start time of each flow in So has been regularized to

a multiple of
√
cδ. Since reconfiguration only happens at the

start of transmission, we have tkconf ≤ 1√
c
tktrans, ∀k ∈ K.

By adding tktrans at the both sides, we get

T o
k = tkconf + tktrans ≤

(
1 +

1√
c

)
tktrans. (1)

Recall the assumption of dki,j ≥ cδ. After the regularization

operations (Line 5 to Line 9 in Algorithm 2), the following

inequality holds:

tktrans ≤ (

√c�+ 1

√c�)T p
k . (2)

This is because t̂1 is always not greater than (�
√
c�+1

�√c�)·t1 (refer

to Line 6 and Line 7 in Algorithm 2). Thus, by combining the

Eqn. (1) and (2), we have

T o
k ≤

(
1 +

1√
c

)
(

√c�+ 1

√c�)T p
k . (3)

With weighted summing over all coflows, we have

∑
k∈K

wkT
o
k ≤

(
1 +

1

√c�
)2 ∑

k∈K
wkT

p
k

≤ Δ ·
(
1 +

1

√c�
)2 ∑

k∈K
wkT

∗,p
k

≤ Δ ·
(
1 +

1

√c�
)2 ∑

k∈K
wkT

∗
k .

(4)

This completes the proof.

To the best of our knowledge, the multi-coflow scheduling

algorithm proposed by Shafiee and Ghaderi in [17] has the

best approximation ratio in packet switches (4-approximate,

i.e., Δ = 4). So, we can give the approximation ratio of

Reco-Mul in the following corollary.

Corollary 1. Reco-Mul is 4·
(
1 + 1

�√c�
)2

-approximate with
the algorithm given by Shafiee and Ghaderi [17].

V. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to evaluate

Reco-Sin and Reco-Mul based on real workloads. Our

results and analysis indicates that our algorithms always
outperform the state-of-the-art baselines. We highlight the

simulation results as follows:

• Reco-Sin outperforms Solstice [7], the well-known

single coflow scheduling algorithm, in light of the re-

configuration frequency and the CCT. When we varying

the coflow density, Reco-Sin reduces reconfiguration

TABLE I
COFLOW TYPES WITH DIFFERENT DENSITY OF THE DEMAND MATRIX

Density Sparse Normal Dense
Percentage (%) 86.31 5.13 8.56

frequency and CCT up to 86.4% and 15.9%, respectively.

Under different values of δ, Reco-Sin can achieve up to

96.94% performance enhancement in the CCT (Sec.V-C).

• Reco-Mul outperforms existing schemes in the scenar-

ios of weighted or unweighted CCT, which reduces the

CCT by at least 60.31% and 78.76% compared with LP-

II-GB and SEBF+Solstice respectively (Sec.V-D).

• Under different values of important parameters (e.g., δ
and c), Reco-Mul maintains its advantages and can

reduce the CCT by up to 73.26% (Sec.V-D).

A. Methodology

Workload: The workload that consists of 526 coflows is based

on a Hive/MapReduce trace collected on a 3000-machine

150-rack cluster with 10:1 oversubscription ratio. The trace

contains the coflow information which are its arrival time and

the size of shuffle data at the reducers. Since there is no

information about the size of the data flow from the mappers to

the reducers, we uniformly allocate the shuffle data of reducers

to the mappers, similar to [14]. Similar to Sunflow [9], we

extract each record as a coflow demand matrix, whose rows

and columns represent the mappers and reducers, respectively.

In addition, we add ±5% perturbation of flow size to simulate

the real production environment. Coflows are categorized into

three types based on the density of their demand matrices

as follows. We call the density of coflow demand matrix as

DS. We then define 3 types of coflows as follows: 1) Sparse:

DS≤ 0.05, 2) Normal: 0.05 ≤ DS ≤ 0.5, and 3) Dense:

DS ≥ 0.5. We show in Table I) the proportion of each coflow

type.

Coflow Transmission Mode: We categorize the coflows ac-

cording to the following transmission modes: 1) a Single-to-
Single (S2S) coflow contains only one flow from one single

ingress port to one egress port; 2) a Single-to-Multiple (S2M)
coflow contains flows from a single ingress port to multiple

egress ports; 3) a Multiple-to-Single (M2S) coflow consists of

flows from multiple ingress ports to one single egress port,

and 4) a Multiple-to-Multiple (M2M) coflow consists of flows

from multiple ingress ports to multiple egress ports. We hence

categorize the coflows into four types summarized in Table II.

TABLE II
CATEGORY OF COFLOWS WITH DIFFERENT TRANSMISSION MODE

Modes S2S S2M M2S M2M
Numbers% 23.38 9.89 40.11 26.62
Sizes% 0.005 0.024 0.028 99.943

S2S, S2M and M2S transmission modes: Each flow in these

types shares one (ingress or egress) port with all other flows.

116

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 01,2023 at 04:39:41 UTC from IEEE Xplore. Restrictions apply.

The optimal approach is to schedule them one by one. Hence,

both Solstice and Reco-Sin can achieve the optimal CCT.

M2M transmission modes: Table II shows that the majority

of the coflows in the workload are the M2M transmission type.

Their performance is critical to the overall performance. We

will see later in this section the difference between Solstice

and Reco-Sin in their performances to minimize the CCT.

Simulator: We develop a trace-driven flow-level simulator to

perform various algorithms based on the embedded LP solver

GUROBI [22]. Our experiments are conducted on a server

with a Intel Xeon E5-2620v4 CPU with 32 Gigabyte memory

and 2TB hard drive.
Metrics: Our metrics is the normalized average (95-percentile)
weighted or unweighted CCT of a scheme compared with
our algorithms Reco-Sin or Reco-Mul. For example, the
Normalized CCT of Algorithm A is defined as

Normalized CCT =
the CCT of Algorithm A

the CCT of Reco-Mul
.

The lower the normalized CCT is, the better the performance

of Algorithm A is.

B. Baselines

We compare the performances of our proposed algorithms

Reco-Sin and Reco-Mul with the following baselines

for single and multiple coflow scheduling in minimizing the

(weighted) CCT.

1. Lower Bound: the theoretical lower bound on the CCT of

a single coflow in the OCS, Tlb = ρ + τδ, where ρ is the

maximum value of the sum of the matrix row values and the

sum of the column values, and τ is the maximum number of

nonzero entries in rows or columns in matrix.

2. Solstice [7]: the state-of-the-art circuit scheduling algorithm

which operates in two steps: first, it transforms the demand

matrix DC into a k−biostochastic matrix (stuffing) and second,

it iteratively computes a scheduling of configurations (slicing
operation) to complete the transmission.

3. SEBF [11] + Solstice [7]: Smallest-Effective-Bottleneck-

First (SEBF) [11] is to prioritize the coflow with the smallest

effective bottleneck flow. However, SEBF can not be applied

to the OCS directly as the bandwidth allocation operation

can not be used in the context of OCS. Thus, we modify

it a bit and combine it with Solstice for multiple coflow

scheduling. For single coflow scheduling in OCS, we leverage

the aforementioned Solstice.

4. LP-II-GB [16]: LP-II-GB is designed for multiple coflow

scheduling problem. It is mainly based on a time interval

indexed linear program which can be solved in polynomial

time. The algorithm solves a relaxed linear program capturing

the primitive problem, and the optimal solution is used to

derive an estimation value of the CCT for each coflow.

Based on these estimation value computed, it determines the

scheduling order of the coflows. For single coflow scheduling,

they adopt the BvN method.

C. Evaluation of Reco-Sin

We set the parameters of the optical switches according to

the practical scenarios [5], [6]. The link bandwidth is set as

100Gbps. The value of the reconfiguration delay, δ, ranges

from 100ms to 100μs, and its default value is set as 100μs.

(a) Reconfiguration Difference (b) CCT Difference

Fig. 4. Performance in single coflow scheduling.

1) Reconfiguration frequency: The density of demand matrix

can greatly impact the reconfiguration frequency of coflow.

Thus, we fix δ as the default value, and compare Reco-Sin’s

reconfiguration frequency with Solstice’s. (In Fig. 4(a), Fig.

4(b), Fig. 5(a) and Fig. 5(b), from top to bottom, coflow’s den-

sity is sparse, normal and dense.) In general, we can observe

from Fig. 4(a) that Reco-Sin has a lower reconfiguration

frequency than Solstice does. When the demand matrix of

coflow is sparse, normal and dense, Solstice spends 2.58×,

7.07× and 7.36× more reconfigurations than Reco-Sin,

respectively. Note that the performance gap becomes larger

with the density increasing. The reason is that the number

of permutation matrix after BvN decomposition grows along

with the increasing of coflow’s density. We can conclude that

Reco-Sin outperforms Solstice in optimizing reconfigura-

tion times for all types of coflows.

2) CCT: In this section, we evaluate the performance of

Reco-Sin and Solstice in minimizing the CCT. We observe

from Fig. 4(b) that Solstice needs more time to finish the same

coflow than Reco-Sin does. Specifically, Solstice needs

1.19×, 1.15× and 1.14× more time than Reco-Sin to de-

compose demand matrix when scheduling sparse, normal and

dense coflows respectively. This is because of the advantage

of less reconfiguration frequency Reco-Sin has and that the

proportion of reconfiguration time in CCT declines with the

increase of transmission time (i.e., the increase of demand

matrix density). In short, Reco-Sin outperforms Solstice in

minimizing CCT when scheduling one single coflow.

(a) Reconfiguration Difference (b) CCT Difference

Fig. 5. Performance in single coflow scheduling.

117

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 01,2023 at 04:39:41 UTC from IEEE Xplore. Restrictions apply.

3) Impact of δ: The variation of δ is an important character-

istic decided by the hardware of OCS, and it impact the CCT

directly. Similar to previous simulations, from the perspective

of reconfiguration times and CCT, we analyze the strength and

weakness of Reco-Sin and Solstice.

The curves in Figure.5(a) present that Solstice spends more

time on reconfiguration to complete the same coflow than

Reco-Sin. In fact, the variation of δ would not have effect on

reconfiguration frequency of Solstice. The Figure.5(a) depicts

when coflow density changes, the number of reconfigura-

tions of Solstice basically remain invariable when δ changes.

Meanwhile, the amount of reconfigurations of Reco-Sin
declines with the increase of δ. The main reason is that our

regularization operation is directly correlated with δ. When

δ increases, the elements in the coflow demand matrix will

be more aligned after regularization, which in turn reduces

the reconfiguration time. When decomposing sparse coflow,

Solstice spends 2.10 ∼ 3.10× reconfigurations as many

as Reco-Sin does. When the matrix is not sparse, the

reconfiguration demands of Solstice can be 7.55 ∼ 8.12×
as many as that of Reco-Sin. Figure. 5(b) illustrates

their performance on CCT. In our experiments, we adopt the

theoretical lower bound of CCT as the normalized benchmark

and indicate performance of Reco-Sin and Solstice through

their difference. When the coflow demand matrix grows from

sparse to dense, the advantage of Reco-Sin is declining. The

reason is that the proportion of reconfiguration time in CCT

decreases when the coflow matrix is more sparse. Meanwhile,

regardless of the demand matrix density, the gap between

Reco-Sin and Solstice expands when δ increases. It is due to

that the reconfiguration time becomes dominant in CCT with

the increasing of δ, and the advantage of Reco-Sin becomes

more prominent as it has less frequent reconfigurations. As for

the different coflows shown in Fig. 5(b) , Solstice can consume

32.66×, 23.89× and 18.26× time as much as the lower bound,

while the CCT of Reco-Sin consumes only 21.00×, 3.96×
and 2.72×, respectively.

D. Evaluation of Reco-Mul

In this section, we present our evaluation on Reco-Mul
1) Weighted CCT: SEBF+Solstice can be used to optimize

the unweighted CCT, while Reco-Mul and LP-II-GB are for

weighted (and, of course, unweighted) CCT. Thus, in this part,

we compare the performance of Reco-Mul with LP-II-GB’s

in minimizing weighted CCT. The coflow weights are set uni-

formly from [0, 1]. Fig. 6 shows that, Reco-Mul outperforms

LP-II-GB regardless of the coflow density level. Specifically,

for the cases of sparse, normal and dense coflows, Reco-Mul
has 72.75%(35.85%), 60.62%(50.17%) and 54.75%(19.91%)
performance improvement than LP-II-GB in minimizing the

average (95-percentile) weighted CCT. When multiple coflows

contain all the coflows (i.e., coflows with all kinds of density

level), Reco-Mul is 3.44×(1.64×) better than LP-II-GB. The

reason of Reco-Mul’s advantage is basically the alignment

of the flow start time. While coflow’s density increases, the

effect of the start time alignment on the performance reduces,

which accounts for the performance differences among the

cases with different coflow sparsities.

(a) Average (b) 95th percentile

Fig. 6. Performance in minimizing weighted CCT for multiple coflows.

2) Unweighted CCT: In this part, we set the coflow

weights equally and compare Reco-Mul’s, LP-II-GB’s and

SEBF+Solstice’s performances in minimizing unweighted

CCT. The results are shown in Fig. 9. SEBF+Solstice has

the worst performance; LP-II-GB comes the second and

Reco-Mul performs the best. When coflows are sparse,

SEBF+Solstice is 8.87 × (6.56×) worse than Reco-Mul,

and LP-II-GB is 5.47× (2.80×) worse than Reco-Mul. For

the cases of normal and dense coflows, the improvements of

Reco-Mul over LP-II-GB and SEBF+Solstice are 2.52 ×
(1.91×) and 3.41×(2.88×) respectively. When scheduling all

(i.e., mixed) kinds of coflows, LP-II-GB and SEBF+Solstice

need 4.71 × (2.08×) and 8.04 × (5.67×) more time than

Reco-Mul, respectively. The reason of the above perfor-

mance is similar to the one when minimizing the weighted

CCT. Due to the limited space, we omit the details. In

short, Reco-Mul outperforms LP-II-GB and SEBF+Solstice

in minimizing weighted and unweighted CCT.

(a) Average (b) 95th percentile

Fig. 7. Performance in minimizing unweighted CCT for multiple coflows.

3) Reconfiguration frequency: In Sec.V-C, we present that our

proposed Reco-Sin needs less circuit reconfigurations than

Solstice does. In this part, we compare the performance of

Reco-Mul and LP-II-GB, in minimizing the reconfiguration

frequency. Fig. 8 presents our experiment results. Specifically,

if we consider the case where there are coflows of all different

density levels, the reconfiguration time of LP-II-GB is 2.59×
larger than Reco-Mul’s. When scheduling the sparse, normal

and dense coflows, the performance gaps between Reco-Mul
and LP-II-GB are 4.37×, 2.56× and 1.48× respectively. In

brief, when the coflow density increases, the performance gap

between Reco-Mul and LP-II-GB decreases. Because higher

coflow density reduces the proportion of fragmentary flow

demand, thereby diminishes the advantage of Reco-Mul.

4) Impact of δ: Similar to the simulation of Reco-Sin,

δ is also a crucial variable which can affect the performance

118

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 01,2023 at 04:39:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Comparison of reconfiguration frequency for multiple coflows.

of Reco-Mul. In Reco-Mul, a critical step is stretching

the scheduling order of flows to eliminate their conflict on

transmission time. Moreover, δ is directly relevant of this

stretch process. According to Fig. 9(a), when δ increases from

1us to 100us, Reco-Mul gradually expands its advantages.

For instance, when δ = 1us, LP-II-GB needs 1.61× time

to finish multiple coflow scheduling than Reco-Mul. When

δ = 10us and δ = 100us, Reco-Mul need only 50.25%
and 26.74% time of LP-II-GB. Because the reconfiguration

frequency of Reco-Mul will decline while δ enlarges. In

the meantime, due to reconfiguration time is a product of

reconfiguration frequency and δ, generally, the reconfiguration

time of Reco-Mul declines while δ increases to 100us. On

the other hand, reconfiguration frequency of LP-II-GB will not

be affected by the variation of δ, so CCT of LP-II-GB becomes

larger with δ’s enlargement. However, we observe that the gap

between Reco-Mul and LP-II-GB drops when δ increases to

1ms and 10ms. The reason is the excessive growth of δ. When

δ increases to ms, the reconfiguration time becomes dominant

in CCT. The rapid growth of δ weakens the benefit from

reconfiguration frequency, so Reco-Mul is not able to take

advantage of less reconfiguration frequency. If δ approaches

infinity, the performance gap between Reco-Mul and LP-

II-GB will approach to the ratio of their reconfiguration

frequency. When δ equals to 1ms and 10ms, Reco-Mul is

1.17× and 1.18× better than LP-II-GB.

In conclusion, Reco-Mul is able to maintain the advan-

tages when varying the δ’s. When the reconfiguration delay is

100us, Reco-Mul performs the best. As a matter of fact, our

conclusion reflects that Reco-Mul is adaptable to different

kinds of industrial OCS with different configuration delays.

(a) various δ (b) various c

Fig. 9. The impact of δ and c in multiple coflow scheduling.

5) Impact of the constant c: Recall that we assume that

there is no tiny flow in OCS, and any traffic demand is at

least c · δ (Sec. II). In practice, the value of c corresponds to

the real industrial environment. As shown in Fig. 9(b), obvi-

ously the advantage of Reco-Mul gradually is strengthened

when c increases. For c=2 to 4, the time required by LP-II-

GB for scheduling increases from 1.74× to 1.96×. When c

ranges from 5 to 7, Reco-Mul strengthens its advantages in

minimizing CCT from 2.83× to 3.744×. Thus, the simulation

result validates our theoretical analysis. The reconfiguration

frequency and time of Reco-Mul will decrease along with

the increase of c by the stretching operation. Consequently,

the CCT of Reco-Mul will continuously decrease.

VI. DISCUSSION

Mice Flows: OCS is designed for the high-throughput trans-

mission due to its large bandwidth, and the reconfiguration

process is a natural handicap to transmit mice flows. Let τ
be the maximum number of non-zero entries of each row or

column of a demand matrix, then τδ is a lower bound of the

total reconfiguration delay, which even the optimal scheduling

in OCS can not avoid. It implies that OCS is not ideal to

transmit mice flows. Thus, in practical systems, only elephant

flows are transferred through the OCS and mice flows can be

handled more efficiently by packet switches [7]. Therefore, in

this work, we assume that there are no tiny flows in OCS.

Not-all-stop OCS: As stated in Sec. II-A, we consider all-stop
OCS commonly used in previous works [6]–[8], [10]. Another

circuit establishment model is not-all-stop as adopted by Sun-

flow [9], where during reconfiguration, communication stops

only on the affected ports including the ports to be set up and

those to be torn down, while the circuits unchanged can keep

transmission. Based on the current manufacturing technique,

a pure non-all-stop OCS is still hard to implement. Intuitively,

a feasible scheduling in the all-stop model is still feasible

in the not-all-stop model. Moreover, our proposed algorithm

Reco-Mul can have the same approximation ratio in the not-
all-stop model. Note that Eqn. 4 in the approximation ratio

proof of Reco-Mul(Theorem 3) is still correct by replacing

the optional weighted CCT in the all-stop model with that in

the not-all-stop. Therefore, as shown in Table III, combining

the results of Sunflow, the coflow scheduling in both OCS

models can achieve constant approximations.

TABLE III
APPROXIMATION RATIOS FOR COFLOW SCHEDULING IN OCS

Algorithm
Model Single coflow Multiple coflow

N A N A
Sunflow [9] 2 - - -

Reco-Sin,Reco-Mul - 2 4 · f(c) 4 · f(c)

N: Not-all-stop model, A: All-stop model, f(c) =
(
1 + 1

�√c�
)2

VII. RELATED WORK

In this section, we present related works on circuit schedul-

ing and coflow scheduling. We list some of the most repre-

sentative related works and make a comparison in Table IV.

A. Circuit Scheduling:

Helios [5] and c-Through [8] proposed hybrid circuit/packet

switch architectures. Both focused on the circuit management

to minimize the flow completion time. They adopted the well-

known Edmonds maximum weighted matching algorithm to

119

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 01,2023 at 04:39:41 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
COMPARISON AMONG THE RELATED WORK AND OUR RESULTS

Solutions Coflow-aware OCS-enable Performance Guarantee
Qiu et al. [16], Chen et al. [23], Shafiee et al. [17], Sincronia [24] and etc. � � �

Varys [11], Aalo [12],CODA [13] � � �
Heilos [5], c-through [8], Porter et al. [10], Liu et al. [7], and etc. � � �

Sunflow [9] � � Single Coflow �
Mulitple Coflows �

Reco[this work] � � Single Coflow �
Mulitple Coflows �

schedule the circuits [18]. Later, Porter et al. [10] proposed

an improved circuit scheduling algorithm, called Traffic Ma-

trix Scheduling (TMS). Borrowing the idea of BvN [25],

[26], their algorithm decomposed the traffic demand matrix

into permutation matrix associated with a series of circuit

assignments for a predetermined period of time. However,

BvN decomposition did not work well in minimizing the

number of configurations, which could incur unavoidable and

significant reconfiguration delays as we claimed in Sec. III-A.

Paper [27] achieved an approximation algorithm for circuit

scheduling under specific settings, where the demands and

reconfiguration time were integers, and the minimum demand

transmission time was assumed as an integral multiple of

the reconfiguration time. Liu et al. [7] developed a flow

scheduling algorithm called Solstice to minimize the maximum

flow completion time particularly for the hybrid circuit/packet

networks. Solstice effectively improved the circuit utilization

to reduce the number of configurations, and thus outperformed

BvN. Our algorithm Reco-Sin, compared with Solstice,

reduces the CCT with even less frequent reconfigurations. and

guarantees a performance with a constant approximation ratio.

B. Coflow Scheduling

Most previous works on network-level optimization were

agnostic on the application-level performance metrics (e.g.,
[28]). which introduces negative impact on the application

performance (examples can be found in [4], [11], [12]). The

coflow abstraction was first proposed in [4] to bridge the above

gap. Some existing works on coflows focused on minimizing

the average CCT (see [4], [11]–[14], [16], [23], [24], [29]–

[32]). Varys [11] proposed effective heuristics to schedule

coflows aiming at minimizing the average CCT. Without prior

knowledge of coflows, Aalo [12] adopted Discretized Coflow-

Aware Least-Attained Service (D-CLAS) to separate coflows

into priority queues based on the amounts they have already

sent. CODA [13] was the first work to recognize coflows

among individual flows using machine learning techniques. An

error-tolerant coflow scheduler was then proposed and imple-

mented. The above papers studied heuristics-based solutions

and mainly focused on system implementation, which are lack

of theoretical performance guarantees. Qiu et al. [16] proposed

the first deterministic algorithm with a constant approximation

ratio for multiple coflow scheduling, which defined the flow

completion time as the duration from a common original time

point to the completion of the flow regardless of its real arrival

time. Paper [17] further improved the approximation ratio in

the setting that the coflows arrived to the network at the same

time. Essentially, the solutions in [16] and [17] determined

the scheduling order of the coflows based on the solutions to

a carefully formulated linear program. Li et al. [14] studied

the coflow scheduling and routing problem, and proposed the

first online algorithm with performance guarantees for the

problem. Liang and Modiano [33] assumed stochastic coflow

arrivals, and studied the optimal scaling of coflow-level delay

in an N × N input-queued switch as N → ∞. Chen et al.
[23] studied the utility optimization for coflow scheduling,

who proposed a utility-based scheduler to provide differential

treatment to coflows with different degrees of sensitivity. Tian

et al. [29] studied dependent coflows of multi-stage jobs to

minimize total weighted job completion time. Utopia [30]

focused on the near-optimal coflow scheduling with provable

isolation guarantee. Sincronia [24] presented a near-optimal

network design for coflows that can be implemented on top of

any transport layer to support priority scheduling. Huang et al.
[9] might be the first to consider coflow scheduling in optical

circuit switches, which presented a constant approximation for

single coflow scheduling and a heuristic to schedule multiple

coflows in the not-all-stop model. Paper [34] investigated

coflow scheduling in OCS under online settings, where a

heuristic algorithm was proposed without any theoretical

performance guarantee. To the best of our knowledge, our

algorithm, Reco-Mul is the first approximation algorithm for

multiple coflow scheduling in OCS.

VIII. CONCLUSION

In this paper, we study the coflow scheduling problem in

the context of optical circuit switches enabled data centers. We

first propose a novel operation called regularization which is

simple but effective to avoid frequent circuit reconfigurations.

Then, for single coflow scheduling, we present Reco-Sin,

an efficient 2-approximation algorithm. As for multiple coflow

scheduling, we present Reco-Mul, based on the regulariza-

tion operation, which achieves a constant approximation ratio

to the optimum as well. Extensive simulations based on real

data traces show that our proposed algorithms significantly

outperform the state-of-the-art schemes in optimizing the

weighted CCT. In practical systems, the information of a

coflow might be known only when it arrives to the network.

To this end, one interesting future direction is to derive online

coflow scheduling schemes for OCS-based networks.

120

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 01,2023 at 04:39:41 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed Data-Parallel Programs from Sequential Building Blocks,”
in ACM SIGOPS/Eurosys, 2007.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in HotCloud, 2010.

[4] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in ACM HotNets, 2012.

[5] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid
electrical/optical switch architecture for modular data centers,” in ACM
SIGCOMM, 2010.

[6] C.-H. Wang, T. Javidi, and G. Porter, “End-to-end scheduling for all-
optical data centers,” in IEEE INFOCOM, 2015.

[7] H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage,
S. Seshan, G. M. Voelker, D. G. Andersen, M. Kaminsky et al.,
“Scheduling techniques for hybrid circuit/packet networks,” in ACM
CoNEXT, 2015.

[8] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng,
M. Kozuch, and M. Ryan, “c-through: Part-time optics in data centers,”
in ACM SIGCOMM, 2010.

[9] X. S. Huang, X. S. Sun, and T. E. Ng, “Sunflow: Efficient optical circuit
scheduling for coflows,” in ACM CoNEXT, 2016.

[10] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Ros-
ing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond
circuit switching into the data center,” in ACM SIGCOMM, 2013.

[11] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” in ACM SIGCOMM, 2014.

[12] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” in ACM SIGCOMM, 2015.

[13] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng, “Coda:
Toward automatically identifying and scheduling coflows in the dark,”
in ACM SIGCOMM, 2016.

[14] Y. Li, S. H.-C. Jiang, H. Tan, C. Zhang, G. Chen, J. Zhou, and F. Lau,
“Efficient online coflow routing and scheduling,” in MobiHoc, 2016.

[15] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker,
G. Papen, A. C. Snoeren, and G. Porter, “Circuit switching under the
radar with reactor.” in USENIX NSDI, 2014.

[16] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted
completion time of coflows in datacenter networks,” in SPAA, 2015.

[17] M. Shafiee and J. Ghaderi, “An improved bound for minimizing the
total weighted completion time of coflows in datacenters,” IEEE/ACM
Transactions on Networking (TON), vol. 26, no. 4, pp. 1674–1687, 2018.

[18] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathemat-
ics, vol. 17, no. 3, pp. 449–467, 1965.

[19] M. Marcus and R. Ree, “Diagonals of doubly stochastic matrices,” The
Quarterly Journal of Mathematics, vol. 10, pp. 296–302, 1959.

[20] F. Dufossé and B. Uçar, “Notes on birkhoff–von neumann decomposition
of doubly stochastic matrices,” Linear Algebra and its Applications, vol.
497, pp. 108–115, 2016.

[21] R. A. Brualdi, “Notes on the birkhoff algorithm for doubly stochastic
matrices,” Canadian Mathematical Bulletin, vol. 25, no. 2, pp. 191–199,
1982.

[22] GUROBI, “Gurobi,” http://www.gurobi.com.
[23] L. Chen, W. Cui, B. Li, and B. Li, “Optimizing Coflow Completion

Times with Utility Max-Min Fairness,” in IEEE INFOCOM, 2016.
[24] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys, and

A. Vahdat, “Sincronia: near-optimal network design for coflows,” in
Proc. of ACM SIGCOMM, 2018.

[25] G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac.
Tucumán Rev. Ser. A, vol. 5, pp. 147–151, 1946.

[26] J. Von Neumann, “A certain zero-sum two-person game equivalent to
the optimal assignment problem,” Contributions to the Theory of Games,
vol. 2, pp. 5–12, 1953.

[27] B. Towles and W. J. Dally, “Guaranteed scheduling for switches
with configuration overhead,” IEEE/ACM Transactions on Networking,
vol. 11, no. 5, pp. 835–847, 2003.

[28] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal Near-Optimal Datacenter Transport,”
in ACM SIGCOMM, 2013.

[29] B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling coflows of multi-
stage jobs to minimize the total weighted job completion time,” in IEEE
INFOCOM, 2018.

[30] L. Wang, W. Wang, and B. Li, “Utopia: Near-optimal coflow scheduling
with isolation guarantee,” in IEEE INFOCOM, 2018.

[31] W. Li, X. Yuan, K. Li, H. Qi, and X. Zhou, “Leveraging endpoint
flexibility when scheduling coflows across geo-distributed datacenters,”
in IEEE INFOCOM, 2018.

[32] S. Im, M. Shadloo, and Z. Zheng, “Online partial throughput maximiza-
tion for multidimensional coflow,” in IEEE INFOCOM, 2018.

[33] Q. Liang and E. Modiano, “Coflow Scheduling in Input-Queued
Switches: Optimal Delay Scaling and Algorithms,” in INFOCOM, 2017.

[34] C. Xu, H. Tan, J. Hou, C. Zhang, and X.-Y. Li, “Omco: Online multiple
coflow scheduling in optical circuit switch,” in Proc. of IEEE ICC, 2018.

121

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 01,2023 at 04:39:41 UTC from IEEE Xplore. Restrictions apply.

